

ETA-Danmark A/S
Göteborg Plads 1
DK-2150 Nordhavn
Tel. +45 72 24 59 00
Fax +45 72 24 59 04
Internet www.etadanmark.dk

Authorised and notified according
to Article 29 of the Regulation (EU)
No 305/2011 of the European
Parliament and of the Council of 9
March 2011

MEMBER OF EOTA

European Technical Assessment ETA-18/0883 of 2025/10/24

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Rockpanel Premium A2 with visible fixing

Product family to which the above construction product belongs:

Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system

Manufacturer:

ROCKWOOL B.V.
Industrieweg 15
NL-6045 JG Roermond
Tel. +31 475 353000

Manufacturing plant:

ROCKWOOL B.V. / Rockpanel
Konstruktieweg 2
NL-6045 JD Roermond

This European Technical Assessment contains:

14 pages including 4 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

European Assessment Document (EAD)
no. 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system

This version replaces:

The previous ETA with the same number issued on 2022-09-16

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

General

Rockpanel Premium A2 is made from prefabricated compressed Rockwool panels with thermo-hardening synthetic binders. The boards are fastened to aluminium or steel subframes. Fastening to the aluminium or steel subframe is carried out with corrosion resistant rivets.

Mechanical fasteners, aluminium and steel profiles are specified by the ETA-holder.

The physical properties of the panels are indicated in Table 1.

Table 1:

Property:	Value
Thickness, nominal	11 mm
Length, max	3050 mm
Width, max	1250 mm
Density, nominal	1250 kg/m ³
Bending strength, length and width	$f_{05} \geq 25.5 \text{ N/mm}^2$
Modulus of elasticity	$m(E) \geq 4740 \text{ N/mm}^2$
Thermal conductivity EN 10456	0.55 W/(m·K)
Cumulative dimensional change %	Length: 0.064 Width: 0.064
Coefficient of thermal expansion, length and width	$\alpha = 9.7 (10^{-6} \text{ }^{\circ}\text{K}^{-1})$
Coefficient of moisture expansion 23°C/50% RH to 92% RH, length and width	0.206 mm/m after 4 days

Finishes

The finish is indicated in Table 2. The coating is provided in several colours and designs.

The Rockpanel Premium A2 includes the ProtectPlus finish i.e. the panels are surface treated on one side with water-borne primer and a water-borne coloured paint, which has been provided with an extra anti-graffiti clear coat on top of the colour paint.

Table 2:

Rockpanel Premium A2: (water-borne polymer emulsion coating with anti-graffiti clear coat)	Clear coat or Clear coat with wood texture "Woods" e.g.: Teak, Maple or stone texture "Stones" e.g.: Mineral Chalk, Basalt Anthracite or clear coat with metallic particles e.g. Metallics Aluminium, Brilliant Karbo, Chameleon
--	---

Colourfastness

The colourfastness of the panels is indicated in Table 3.

Table 3:

Property	Value (ISO 105 A02)
Colour fastness after 5000 hours artificial weathering (TR010 climate class S)	Rockpanel Premium A2: 4 or better

Subframes

The panels are attached to the building by fixing to a subframe of aluminium or steel.

The minimum thickness of the vertical aluminium profiles is 1,5 mm. The aluminium is AW-6060, AW-6063, AW-6005A or equivalent according to EN 755-2. The $R_m/R_{p0.2}$ value is $\geq 170/140$ for profile T6 and $\geq 195/150$ for profile T66.

The minimum thickness of the vertical steel profiles is either 1.0 mm [a] (steel quality is S320GD +Z EN 10346 number 1.0250, or equivalent for cold forming), or 1.5 mm [a] (steel quality EN 10025-2:2004 S235JR number 1.0038).

[a] The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment. The International Zinc association can be consulted for more information. The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner. Alternatively, a hot dip galvanized coating according to EN ISO 1461 can be used.

Joints

Aluminium profiles

The horizontal joints between the panels can be open.

Fasteners

The panels are mechanically fixed to a vertical aluminium or steel subframe. The mechanical fastening to an aluminium subframe is carried out with EN AW-5019 (AlMg5) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated. The mechanical fastening to steel subframe is carried out with either EN 10088 (no 1.4578) rivets, head diameter 15 mm, body

diameter 5 mm, head colour coated, or EN 10088 (no 1.4567) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated.
For correct fixing, a riveting tool with rivet spacer must be used, see Table 5 and Table 10 of the ETA.

The maximum fixing distances and hole diameter, appear from Table 11 and Table 12 of the ETA.

The installation method for the rivets with the use of fixed points and moving points appears from Annex 3, Table 11 and Figure 2 of the ETA.

Design value of the axial load appears from Annex 3, Table 10 and Table 12 of the ETA.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The boards are intended for external cladding and for fascias and soffits according to Figure 1. The cladding on vertical aluminium or steel subframe with mechanically fixed boards shall be carried out with ventilated cavities at the back.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years.

In addition, for aluminium support systems intended to be used for facades:

In some member states national climate conditions may reduce the service life of the aluminium support system to 35 years or more.

An additional assessment of the aluminium support system might be necessary to comply with Member State regulations or administrative provisions.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic
3.2 Safety in case of fire (BWR 2)	
Reaction to fire	The aluminium profiles are classified as Euroclass A1 Classification of panel: See table 4
3.3 Hygiene, health and the environment (BWR 3)	
Dangerous substances	The kit does not contain/release dangerous substances specified in TR 034, dated April 2013, except Formaldehyde concentration 0.0105 mg/m ³ , Formaldehyde class E1.
	The used fibres are not potential carcinogenic No biocides are used in the Rockpanel boards No flame retardant is used in the boards No cadmium is used in the boards.
Water vapour permeability	No performance assessed
Water permeability incl. joints for non-ventilated applications	No performance assessed
Drainability	No performance assessed

3.4 Safety and accessibility in use (BWR 4)

In absence of national regulations, the design values X_d may be calculated as indicated in the ETA (see Table 12). Below the safety factors are listed which have been used in the calculation of the design values.

Pull-out resistance of fasteners	Rivets aluminium or stainless steel Fastener specification according to Table 5. Annex 3 Table 12 row (15) contains the characteristic pull-out strength.
Pull-through resistance of boards	Rivets aluminium or stainless steel Fastener specification according to Table 5. Characteristic pull-through for three different fixing locations. Annex 3 Table 12 row (7) contains the design value of the pull-through resistance for the different fixing locations.
Wind load resistance	Rivets aluminium or stainless steel Fastener specification according to Table 5 Annex 3 Table 12 row (9) contains the average wind load resistance (N/m ²). Kit failure due to failure of the boards, failure of the rivet head or pull-through of the rivet. Maximum deformations in the wind load tests for M/E/C: 29/35/33 (span 600/600) and 43/45/40 for span 750/750.
Design value of axial loads Design value X_d obtained by dividing the characteristic value X_k by a partial factor γ_m : $X_d = X_k / \gamma_m$ The design value X_d of a material property can be expressed in general terms as $X_d = \eta * X_k / \gamma_m$ For Rockpanel $\gamma_m = 1.6$. The conversion factor $\eta = 0.8$ [aged bending strength divided by the f_{05} (Table 1)]. As a result $\gamma_m = 2.0$	Rivets aluminium or stainless steel The design value of the axial load $X_d = X_k / \gamma_m$ for the combination rivet and 11 mm Premium A2 boards can be found in Annex 3 Table 12 row (18). The following material factors have been used: for the combination rivet and Premium A2: $\gamma_m = 2.0$ For the combination rivet-subframe $\gamma_m = 1.25$

Characteristic	Assessment of characteristic
Characteristic shear strength rivet fixings Average value	2194 N
Deformation shear	4.4 mm
Impact resistance	See Table 6 and Annex 4 Table 13 for Use category
Wind load resistance	See Table 8 and 9, for the locations see Table 10
Mechanical resistance	See section 1, Table 1

3.8 Aspects of durability

Resistance to hygrothermal cycles	Pass
Dimensional stability	See Table 7
Immersion in water without UV	Not relevant
Humidity and NaCl	Not relevant
Humidity and SO ₂	Not relevant
Resistance to Xenon Arc exposure	Pass

Reaction to fire

Table 4. Euroclass classification of construction with Rockpanel Premium A2

The panels have been classified in accordance with EN 13501-1 with the following parameters

Fixing method	Ventilated or non-ventilated	Vertical aluminium or steel profiles
Mechanically fixed	Ventilated with ≥ 20 mm cavity	A2-s1,d0

Field or application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

- Results are also valid for the panels without insulation, if the substrate chosen according to EN 13238 is made of panel with Euroclass A1 or A2 (e.g. fibre-cement panels).

Subframe:

- Test results are only valid for a metal subframe.

Fixings:

- The results are also valid when using smaller mounting distances.
- The results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa.

Cavity:

- Unfilled.
- The depth of the cavity is minimum 20 mm.
- Test results are also valid for other higher thicknesses of air space between the back of the board and the insulation behind the subframe.

Joints:

- Vertical joints are without a gasket backing and horizontal joints can be open or closed with an aluminium profile.
- The result from a test with an open horizontal joint is also valid for the same type of panel used in

Euroclass classification

The classification mentioned in Table 4 is valid for the following end use conditions.

Mounting:

- Mechanically fixed to a metal subframe.
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation.

Substrates:

- Concrete walls, masonry walls.

Insulation:

- Ventilated constructions: The subframe is backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of minimal 20 mm between the panels and the insulation.
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification.

- applications with horizontal joints closed by steel or aluminium profiles.
- Maximum joint width 10 mm.

The classification is valid for the following product parameters:

Thickness

- Nominal 11 mm

Density

- Nominal 1250 kg/m³

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V.

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which describes the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / Rockpanel in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label and/or on the protective film of every board the website is printed which guides the end user to the most actual information.

The boards are in general mounted with a joint width of between 5 and 10 mm.

If junctions are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The holes for the rivet fixings are drilled into the panels not less than 20 mm from a vertical edge and 50 mm from a horizontal edge. For correct fixing, a riveting tool with rivet spacer must be used.

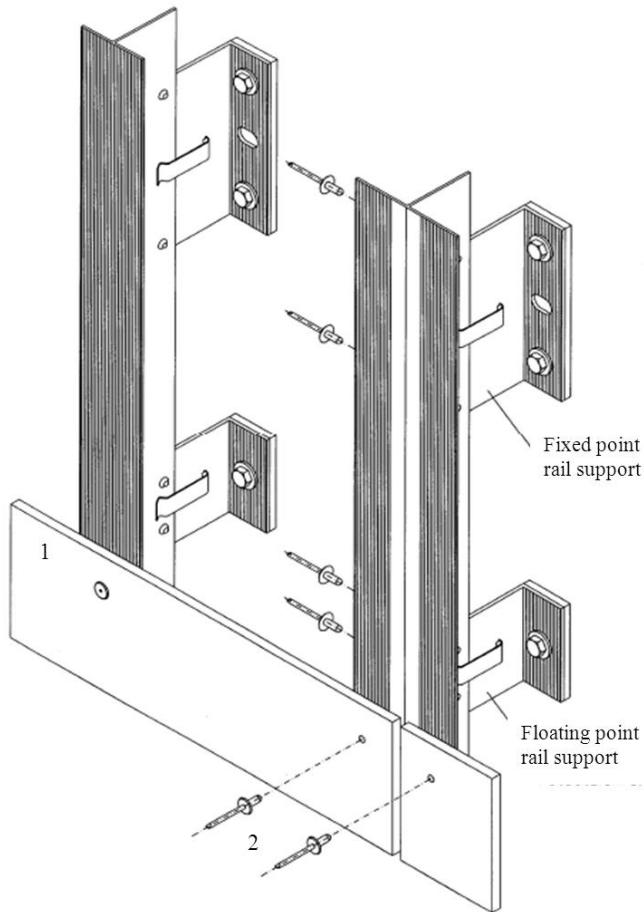
4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking


Issued in Copenhagen on 2025-10-24 by

Thomas Bruun
Managing Director, ETA-Danmark

Annex 1
Pre-fabricated compressed mineral wool boards with organic or inorganic finish

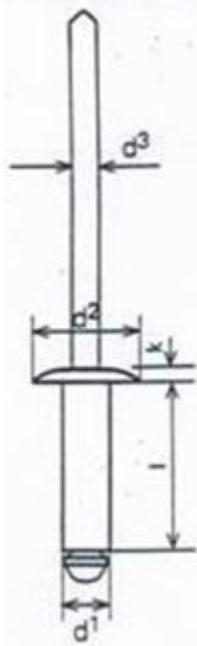
Figure 1. Ventilated intended use on vertical metal subframe

1. Compressed mineral wool boards with organic or inorganic finish
2. Rivet fixing

Annex 2
Fastener specification

Table 5 – Fastener specification for metal subframes

Rivet aluminium or stainless steel					
	SFS Aluminium	SFS Stainless steel A4 [a]	MBE Aluminium	MBE Stainless steel A4 [b]	
Code	AP14-50210-S	SSO-D15-50180 [d]		FN-Al5-5x21 K14	FN-A4-5x18 K15
Body	Aluminium EN AW-5019 (AlMg5) in accordance with EN 755-2	Stainless steel material number 1.4578 in accordance with EN 10088	Aluminium EN AW-5019 (AlMg5) in accordance with EN 755-2	Stainless steel material number 1.4578 in accordance with EN 10088	
Mandrel	Stainless steel material number 1.4541 in accordance with EN 10088	Stainless steel material number 1.4541 in accordance with EN 10088	Stainless steel material number 1.4541 in accordance with EN 10088	Stainless steel material number 1.4541 in accordance with EN 10088	
Pull-out strength	$F_{mean,n} = 2038$	$F_{mean,n} = 1428$	$F_{mean,n} = 2038$	$F_{mean,n} = 1428$	
	$s = 95$	$s = 54$	$s = 95$	$s = 54$	
	$F_{u,5} = 1882$	$F_{u,5} = 1339$	$F_{u,5} = 1882$	$F_{u,5} = 1339$	
d^1	5	5	5	5	
d^2	14	15	14	15	
d^3	2.7	3.25	2.7	3.25	
l	21	18	21	18	
k	1.5	1.5	1.5	1.5	
Profile	Aluminium $t \geq 1.5$ mm	Steel $t \geq 1.0$ mm	Aluminium $t \geq 1.5$ mm	Steel $t \geq 1.0$ mm	


[a]: The minimum thickness of the vertical steel profiles is 1.0 mm. The steel quality is S320GD + Z EN 10346 number 1.0250 (or equivalent for cold forming). For minimum coating thickness see [c]

[b]: The minimum thickness of the vertical steel profiles is 1.5 mm. The steel quality is EN 10025-2:2004 S235JR number 1.0038. For minimum coating thickness see [c].

[c]: The minimum coating thickness (Z or ZA) is assessed by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment. The International Zinc association can be consulted for more information. The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner. Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

[d]: In the event of an application onto steel > 2 mm, the same rivet should be applied with a higher clamping thickness i.e. SSO-D15-50220 with a length of 22 mm.

[e]: In the event of an application onto steel > 2 mm, the same rivet should be applied with a higher clamping thickness i.e. FN-A4-5x22 K15 with a length of 22 mm.

Annex 3
Performance

Impact resistance

Table 6. Use category and shatter properties of Rockpanel Premium A2 with rivet fixing

Body	Category IV	Category III	Category II	Category I
Hard body 1 Joule	pass	-	-	-
Hard body 3 Joule	-	pass	pass	pass
Hard body 10 Joule	-	-	pass	pass
Soft body 10 Joule	pass	pass	-	-
Soft body 60 Joule	-	-	fail	fail

Dimensional stability

Table 7. Deformation Rockpanel Premium A2 in accordance with EN 438-2

Characteristic	Premium A2, 11 mm	
	Length of the board	Width of the board
Deformation	0.061%	0.066%
Dry heat 23°C / 50% to 23°C / 0% (mm/m)	-0.240	-0.290
Coefficient of thermal expansion ($10^{-6} \text{ }^{\circ}\text{K}^{-1}$)	9.7	9.7
Coefficient of moisture expansion 42% change RH (mm/m) 50% to 92% RH after 4 days	0.204	0.207

Wind load resistance

Table 8. Test results average failure load panel fixing N/m^2
Positions according to Table 10

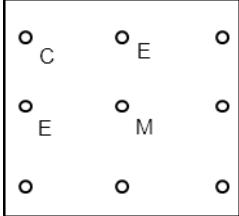

	M	E	C
Rivets	4266	3641	4047

Table 9. Test results average strength panel fixing N
Positions according to Table 10

	M	E	C
Rivets	2750	1348	679

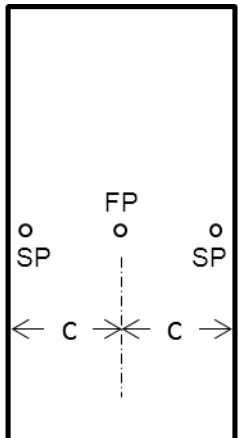
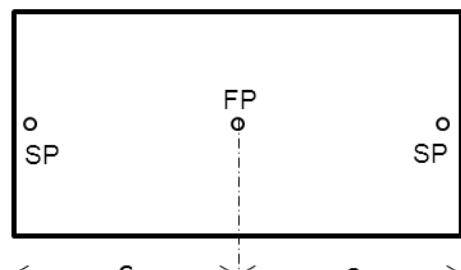
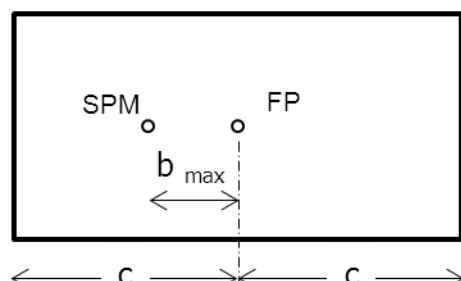
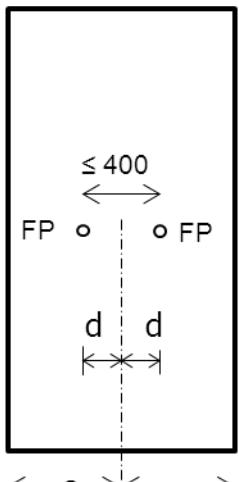
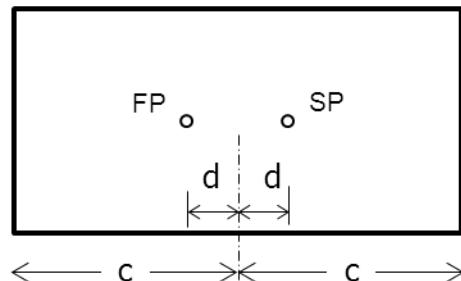
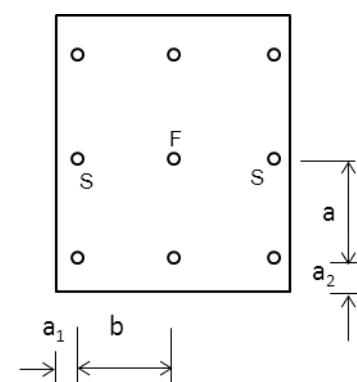





Fixing positions

Table 10. Fixing positions M / E / C used in this document


	M: fixing in intermediate position E: edge fixing C: corner fixing See figure 2 for examples of possible installation methods for rivet fixing Remark: rivet fixing only with a riveting tool with rivet spacer
---	---

Annex 3
continued

Figure 2. Examples of possible installation methods with the use of fixed points and slotted points for rivet fixing

 	<p>FP – fixed point SP – slotted point MP – moving point All the other fixing points are ‘moving points’ b_{\max}: see Table 12</p> <p>FP: Fixed point may be realized by the use of a metal (aluminium or stainless steel) sleeve in a hole with the diameter of a moving point.</p> <p>SP: Slotted points may be realized by the use of a metal (aluminium or stainless steel) side sleeve in a hole with the diameter of a moving point. Maximum distance between slide sleeve and fixed point amounts 600 mm.</p> <p>SPM: Slotted point with the use of a slide sleeve (see also SP)</p>
---	--

Table 11. Hole diameters for rivet fixing [mm]

	Rivet
F – Fixed point	5.1
S – Slotted holes	5.1 x 8.0
Moving points – all the other positions	8.0

Annex 3
continued

Table 12. Characteristic axial load X_k and design value of the axial load $X_d = \eta * X_k / \gamma_m$ for the combination rivet and Premium A2 boards [a]

Board thickness	11 mm			(1)
Location of the fixing in the board	M-middle E-edge C-corner			(2)
Pull-through N				(3)
Characteristic pull-through	1228	788	797	(4)
Material factor Rockpanel γ_m	1.6	1.6	1.6	(5)
Conversion factor η	0.8	0.8	0.8	(6)
Design value X_d of the pull-through N	614	394	398	(7)
Wind suction				(8)
Average wind load in N/m ²	4266	3641	4047	(9)
Average strength N	2750	1348	679	(10)
Material factor Rockpanel γ_m	1.6	1.6	1.6	(11)
Conversion factor η	0.8	0.8	0.8	(12)
Design value X_d of the pull-through N	1375	674	340	(13)
Pull-out strength (lower value of rivet/subframe combination)				(14)
Pull-out $F_{u,5}$ N	≥ 1300	≥ 1300	≥ 1300	(15)
Material factor aluminium γ_M	1.25	1.25	1.25	(16)
Design value X_d of the pull-out N	1040	1040	1040	(17)
Design value of the axial load $X_d = \eta * X_k / \gamma_m$ For the combination rivet and 11 mm boards N	614	394	340	(18)
Board span b	≤ 750			(19)
Fixing distance a	≤ 750			(20)

[a] For correct fixing, a riveting tool with rivet spacer must be used.

Annex 4**Impact resistance****Table 13.** Impact resistance: definition of use categories

Use category	Description
I	A zone readily accessible at ground level to the public and vulnerable to hard body impacts but not subjected to abnormally rough use. (e.g.: Façade bases in buildings sited in public locations, such as squares, schoolyards or parks. Cleaning gondolas may be used on the façade).
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care (e.g.: Façade bases in buildings not sited in public locations (e.g. squares, schoolyards, parks) or upper façade levels in buildings sited in public locations that occasionally can be hit by a thrown object (e.g. ball, stone, etc.). Cleaning gondolas may be used on the façade).
III	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects (e.g.: Upper façade levels in buildings (not including base) not sited in public locations, that occasionally can be hit by a thrown object (e.g. ball, stone, etc.). Cleaning gondolas should not be used on the façade).
IV	A zone out of reach from ground level (e.g.: High façade levels that cannot be hit by a thrown object. Cleaning gondolas should not be used on the façade).

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit